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Continuation methods are well-known techniques for computing several
stationary solutions of problems involving one or more physical parameters.
In order to determine whether a stationary solution is stable, and to detect
the bifurcation points of the problem, one has to compute the rightmost
eigenvalues of a related, generalized eigenvalue problem. The recently devel-
oped Jacobi–Davidson QZ method can be very effective for computing sev-
eral eigenvalues of a given generalized eigenvalue problem. In this paper we
will explain how the Jacobi–Davidson QZ method can be used to compute
the eigenvalues needed in the application of continuation methods. As an
illustration, the two-dimensional Rayleigh–Bénard problem has been studied,
with the Rayleigh number as a physical parameter. We investigated the stabil-
ity of stationary solutions, and several bifurcation points have been detected.
The Jacobi–Davidson QZ method turns out to be very efficient for this
problem. Q 1997 Academic Press
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1. INTRODUCTION

In physical applications one is often interested in stationary solutions of partial
differential equations and how their behaviour depends on (some) physical parame-
ter(s) in the model. For instance, one would like to know whether stationary
solutions (if they exist) are stable. At some critical values of the physical parameter,
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the so-called bifurcation points, a stable solution may become unstable and vice
versa; further, the number of stationary solutions can change at bifurcation points.
Clearly, the computation of stationary solutions and bifurcation points is important
for analyzing the physical problem under consideration.

In practice, continuation methods [10] are often used to compute stationary
solutions for different values of the physical parameter(s). With this approach one
may also find unstable stationary solutions; these unstable stationary solutions have
no physical relevance, but they might change into stable ones when the physical
parameter passes a bifurcation point (an example of this will be given in Section
4.2). For the investigation of stability and the determination of bifurcation points,
one has to compute some eigenvalues of a certain generalized eigenvalue problem

Aq 5 lBq; (1.1)

a stationary solution is stable if all eigenvalues l of (1.1) have negative real parts.
If at least one of the eigenvalues has a positive real part, the stationary solution is
unstable. When one of the eigenvalues of (1.1) equals zero (i.e., the matrix A is
singular), the physical parameter is a bifurcation point and the number of stationary
solutions may change [10].

In one continuation step one has to solve a system of nonlinear algebraic equations
(in order to obtain a stationary solution) and to compute some eigenvalues (the
rightmost ones and those closest to zero) of (1.1). The determination of these
eigenvalues is the most expensive part of the computation, both in CPU time
and memory requirements. In this paper we will focus on the computation of
these eigenvalues.

For small problems (1.1), one can compute all eigenvalues with the QZ method
(see, e.g., [6]). However, this is not feasible for larger problems (1.1), e.g., those
obtained from partial differential equations in 2- or 3D (the size of the matrices A
and B is equal to the number of unknowns obtained after discretizing the partial
differential equations). For these problems one should use other methods; a well-
known technique is the power method (see, e.g., [6]), and block versions of this
method (like SIT; see [13, 3]) have been used to obtain more eigenvalues of a
problem equivalent to (1.1) (see, e.g., [3]). However, these methods can be very
slow in practice. The fact that (1.1) is a generalized eigenvalue problem (i.e., B is
not the identity matrix I; in fact, B is often singular) may cause some extra complica-
tions when applying these methods. In the last decade some promising eigenvalue
methods have been developed (see [7] for an overview of and references to such
methods). One of these methods is the so-called Jacobi–Davidson QZ method
developed by Fokkema, Sleijpen, and Van der Vorst [5]. The main purpose of this
paper is to show that this Jacobi–Davidson QZ method can be very efficient for
computing the rightmost eigenvalues of (1.1) and those closest to zero.

As an application of the Jacobi–Davidson QZ method, we consider the two-
dimensional Rayleigh–Bénard problem, with the Rayleigh number as a physical
parameter. The bifurcation behaviour of this problem has been studied extensively
in [3]; in that paper the SIT method has been used to compute some of the rightmost
eigenvalues to (1.1). Our experiments show that the Jacobi–Davidson QZ method
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is more efficient than the SIT method for this example. The successful application
of the Jacobi–Davidson QZ method to the 2D Rayleigh–Bénard problem suggests
that this method might be suitable for investigating the bifurcation behaviour of
3D flow problems in the near future.

This paper is organized as follows. In Section 2.1 we describe how stationary
solutions can be found by using continuation methods. The relation between stability
of stationary solutions and the eigenvalue problem (1.1), as well as the concept
of bifurcation points, will be discussed in Section 2.2. Section 3 deals with the
Jacobi–Davidson QZ method and its application to continuation methods. The
Jacobi–Davidson method, an essential ingredient of the Jacobi–Davidson QZ
method, will be described in Section 3.1, and the Jacobi–Davidson QZ method is
presented in Section 3.2. The application of the Jacobi–Davidson QZ method in
combination with continuation methods will be discussed in Section 3.3. In Section 4
we present an illustration of the Jacobi–Davidson QZ method. The two-dimensional
Rayleigh–Bénard problem and its discretization will be described in Section 4.1.
Our numerical experiments are given in Section 4.2, and the main conclusions of
the paper are summarized in Section 4.3.

2. CONTINUATION METHODS AND THE RELATED EIGENVALUE PROBLEM

2.1. Computing Stationary Solutions with Continuation Methods

Consider the systems of differential equations

BY9(t) 5 F(Y(t), e) for t $ 0, (2.1)

with B [ Rn,n, e [ R, Y(t) [ Rn for t $ 0, and F : Rn11 R Rn is a smooth function.
For y [ Rn the n 3 n matrix

F9(y, e)

stands for the Jacobian matrix of the function F with respect to y, and the vector
Fe(y, e) [ Rn contains the partial derivatives (Fj/e)(y, e).

In (2.1), e stands for a ‘‘physical’’ parameter. Although the solutions to (2.1)
depend on e, we will not express this dependence in order to keep the notation
transparent. Also (systems of) time-dependent partial differential equations lead
to (2.1), after discretizing the spatial derivative(s) with, e.g., a finite difference or
a finite element method.

In many applications one is interested in finding stationary solutions to (2.1), for
different values of e. Let y 5 y(e) be such a stationary solution, i.e.,

F(y(e), e) 5 0. (2.2)

Continuation methods [10] are often used for computing stationary solutions. A
typical example of a continuation method is given in Algorithm 1. Suppose a
stationary solution y0 5 y(e0) and De ? 0 are given.
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ALGORITHM 1. A continuation method.

e1 5 e0 1 De
ỹ1 5 y0 1 De ? y9(e0)
solve F(y1, e1) 5 0 with Newton’s method; use ỹ1 as starting vector
for j 5 2, 3, ..., M do

ej 5 ej21 1 De
ỹj 5 2yj21 2 yj22

solve F(yj , ej) 5 0 with Newton’s method; use ỹj as starting vector
end for

Algorithm 1 generates M stationary solutions yj 5 y(ej). The vector y9(e0) is the
solution to F9(y0, e0)y9(e0) 5 2Fe(y0, e0); this follows from differentiating (2.2)
with respect to e. Instead of ỹj one might use yj21 1 De ? y9(ej21) as a starting
vector for computing yj ; both are O (De2) approximations to yj . The determination
of ỹj requires less computational costs (no linear system has to be solved) and,
therefore, ỹj is used as a starting vector in Algorithm 1.

In practice one often uses (pseudo-)arclength continuation (cf., e.g., [8, 10]). An
advantage of this technique is that it can handle turning points [10], while Algorithm
1 cannot. A major drawback of arclength continuation is that two linear systems
of order n have to be solved in each Newton step (see [3])—instead of one in
Algorithm 1.

More discussion about continuation methods can be found in [10, Chap. 4].
The linear systems which occur in Algorithm 1 have the matrix F9(y, e) as a

coefficient matrix. When (2.1) is obtained from a set of partial differential equations,
this matrix is usually large and sparse. For some of these problems it is possible to
solve the linear systems with a direct solver using important properties of the
Jacobian matrix (like sparsity, small bandwidth). But for large general problems
one has to solve these linear systems iteratively using, e.g., a Krylov subspace
method (such as GMRES [9] or BiCGstab(,) [12]) in combination with a suitable
preconditioner. Finally we note that there exist methods for solving nonlinear
equations which combine the ideas of Newton iteration with Krylov subspace tech-
niques (see, e.g., [2, 4]). These methods may be more efficient for solving
F(yj , ej) 5 0 in Algorithm 1 than Newton’s method.

2.2. Stability and Bifurcation Points

We call a stationary solution y to (2.1) stable if limtRy Y(t) 5 y for all Y(0) close
to y. In order to investigate whether y is stable, Eq. (2.1) is linearized around y
(note that F(y, e) 5 0):

BY9(t) 5 F9(y, e) ? (Y(t) 2 y).

If all eigenvalues of the problem

F9(y, e)q 5 lBq (2.3)
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have strictly negative real parts, then, when certain technical conditions are satisfied
(cf., e.g., [10, p. 20]), the equilibrium y is stable. When at least one eigenvalue of
(2.3) has a positive real part, the equilibrium y is unstable [10, p. 20]. Hence,
investigating the stability of equilibria amounts to computing the eigenvalues (with
largest real part) of (2.3).

The number e is called a bifurcation point if the matrix F9(y, e), with y 5 y(e)
a stationary solution, is singular (cf., e.g., [10]). This matrix is singular if and only
if zero is an eigenvalue of (2.3). The number of stationary solutions to (2.1) may
change at a bifurcation point.

In order to investigate the stability of stationary solutions and the computation
of bifurcation points, we have to determine in each continuation step the rightmost
eigenvalues to (2.3) and those closest to zero. The Jacobi–Davidson QZ method,
to be described in the next section, is well suited for this.

3. THE JACOBI–DAVIDSON QZ (JDQZ) METHOD AND ITS
APPLICATION IN CONTINUATION METHODS

The JDQZ method has been developed recently by Fokkema, Sleijpen, and Van
der Vorst [5]. In this section, the JDQZ method will be described briefly; for more
details and discussion, see [5].

With the JDQZ method one can compute several eigenvalues (and eigenvectors)
of the generalized eigenvalue problem

bAq 5 aBq; (3.1)

here A, B are n 3 n matrices with complex entries and a, b [ C. The pair ka, bl
is called an eigenvalue, and q is the corresponding eigenvector. We write the
eigenvalue problem in the form (3.1), instead of (1.1) (note that l 5 a/b), because
b 5 0 is possible; when B is singular, b 5 0 for at least one eigenvalue. In the
Rayleigh–Bénard problem (see Section 4), and in many other applications from
fluid dynamics, the matrix B is indeed singular.

In Section 3.1 we describe the Jacobi–Davidson method (see [11]), a method to
compute one eigenvalue of (3.1); this method is an essential ingredient of the JDQZ
method. The topic of Section 3.2 is the JDQZ method. The application of the
JDQZ method in combination with continuation methods will be discussed in
Section 3.3.

3.1. The Jacobi–Davidson (JD) Method

With the JD method [11] one tries to compute an approximation kã, b̃l P ka, bl
close to a specified target t (i.e., ã/b̃ should be close to t) and an approximate
eigenvector q̃ P q. In each step a search subspace span hV j containing the vector
q̃ and a test subspace span hW j are constructed; V and W are complex n 3 j matrices
with j ! n and V*V 5 W*W 5 I. The vector q̃ and kã, b̃l are obtained from the
projected eigenvalue problem
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b̃W*AVu 5 ãW*BVu. (3.2)

The eigenpair (kã, b̃l, u) closest to the target t is selected (i.e., ã/b̃ should be as
close as possible to t); the vector q̃ 5 Vu is an approximation to the eigenvector
q. Throughout this paper, the approximate eigenvalue kã, b̃l is scaled such that
uãu2 1 ub̃u2 5 1.

In order to improve the approximations, the spaces spanhV j and spanhW j will
be expanded in the next step; compute the residual r 5 b̃Aq̃ 2 ãBq̃ and the vector
z̃ 5 k0Aq̃ 1 k1 Bq̃ with

k0 5 (1 1 ut u2)21/2, k1 5 2t(1 1 ut u2)21/2,

and scale the vectors q̃ and z̃ such that iq̃i2 5 iz̃i2 5 1 (i?i2 stands for the Euclidean
norm). Note that (3.2) is an eigenvalue problem of small size, so one can use, e.g.,
the QZ method (see, e.g., [6]) to compute all eigenvalues and eigenvectors to (3.2).

The space spanhV j is expanded with the vector v which is orthogonal to q̃ and sat-
isfies

(I 2 z̃z̃*)(b̃A 2 ãB)(I 2 q̃q̃*)v 5 2r, (3.3)

and spanhW j is expanded with the vector w 5 k0Av 1 k1Bv. The vector v is
orthogonalized with respect to the columns of the n 3 j matrix V and then added
to the matrix V. In a similar way, the matrix W is enlarged with the vector w. This
procedure is repeated until iri2 is small enough.

When the space spanhV j becomes too large, it is possible to restart the JD method;
one might, e.g., replace spanhV j by the vector q̃ and spanhW j by z̃, and repeat the
procedure described above. A more efficient restarting procedure will be discussed
in Section 3.2.

The JD method converges quadratically, if (3.3) is solved exactly. Solving (3.3)
is not trivial, because of the different projections involved; see Section 3.2 for details.

Other choices for k0, k1, and the projections in front of and after b̃A 2 ãB in
(3.3) can be found in [5, 11]; experiments indicate that the choices described above
are adequate (cf., e.g., [5, 11]).

3.2. The JDQZ Method

The purpose of the JDQZ method is to determine a partial generalized Schur form

AQk 5 Zk Sk , BQk 5 Zk Tk ; (3.4)

here Qk and Zk are n 3 k matrices with Q*k Qk 5 Z*k Zk 5 I, and Sk and Tk are
k 3 k upper triangular matrices. From (3.4) one easily obtains k eigenvalues of
(3.1) (and, optionally, the corresponding eigenvectors); note that bSk x 5 aTk x
(x [ Ck) implies bAQkx 5 aBQk x. The columns of the matrix Qk are called
generalized Schur vectors.

The first column of Qk (the first Schur vector) is an eigenvector of (3.1), and we
use the JD method to compute this Schur vector. Suppose a partial Schur form
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AQk21 5 Zk21 Sk21 , BQk21 5 Zk21 Tk21

is known already. The question is how to compute the next Schur vector q. In [5]
it is shown that q satisfies Q*k21 q 5 0 and

(I 2 Zk21 Z*k21)(bA 2 aB)(I 2 Qk21 Q*k21)q 5 0. (3.5)

Observe that (3.5) is a generalized eigenvalue problem, and we will use the JD
method to compute an eigenvector q (which is a Schur vector) of (3.5).

To apply the JD method we construct n 3 j matrices V and W with V*V 5

W*W 5 I, and the extra condition V*Qk21 5 W*Zk21 5 0. Let q̃ [ spanhV j and
kã, b̃l P ka, bl be selected from the projected eigenvalue problem

b̃W*(I 2 Zk21 Z*k21)A(I 2 Qk21 Q*k21)Vu

5 ãW*(I 2 Zk21 Z*k21)B(I 2 Qk21 Q*k21)Vu, (3.6)

which is the same problem as (3.2) (in exact arithmetic), because V*Qk21 5

W*Zk21 5 0. Compute r 5 (I 2 Zk21 Z*k21)(b̃A 2 ãB)(I 2 Qk21Q*k21)q̃ and z̃ 5

k0 Aq̃ 1 k1 Bq̃, and scale the vectors q̃ and z̃ such that iq̃i2 5 iz̃i2 5 1. The search
space spanhV j will be expanded with the vector v satisfying

Q*k21v 5 0, q̃*v 5 0,
(3.7)

(I 2 z̃z̃*)(I 2 Zk21Z*k21)(b̃A 2 ãB)(I 2 Qk21Q*k21)(I 2 q̃q̃*)v 5 2r,

and spanhW j is expanded with w 5 k0 Av 1 k1 Bv. The vectors v and w are orthogo-
nalized and added to V and W, respectively. When iri2 is less than a given tolerance,
an acceptable approximation for a new Schur vector q has been detected. This
vector will be added to the matrix Qk21: Qk 5 [Qk21 , q̃] and, further, Zk 5 [Zk21 ,
z̃]. The procedure above can be repeated (with Qk21 replaced by Qk etc.). Before
we explain how (3.7) can be solved, we will discuss how to determine a new matrix
V after the detection of a Schur vector.

When a Schur vector has been found, we have to restart the JDQZ process with
a different matrix V, because the relation V*Qk 5 0 is violated. One might replace
V by a vector v satisfying v*Qk 5 0, but with this choice one might discard informa-
tion in V regarding the new Schur vectors. Also when the space V becomes too
large one would like to restart without losing valuable information. Both kind of
restarts can be done efficiently, using the generalized Schur form related to the
projected system (3.2) (which is equivalent to (3.6)):

W*AVQ 5 Z S , W*BVQ 5 Z T ; (3.8)

here Q and Z are j 3 j matrices with Q *Q 5 Z *Z 5 I and S and T are j 3 j
upper triangular matrices with diagonal elements si and ti , respectively. The general-
ized Schur form (3.8) will be ordered such that
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us1/t1 2 t u # us2/t2 2 t u # ? ? ? # usj/tj 2 t u (3.9)

(this is possible, cf., e.g., [5]). Note that q̃ 5 VQ1 (Q1 is the first column of Q), and
from the orthogonality of VQ it follows that q̃ is perpendicular to the other columns
of VQ. Therefore we restart with V :5 VQ2,j (Q2,j is the matrix consisting of the
2nd, 3rd, ..., jth columns of Q); this new matrix V satisfies V*V 5 I, V*Qk 5 0, and
contains as much information of the old V as possible. Further, we set W :5 WZ2,j .
In a similar fashion we can restart when the matrix V becomes too large. From
(3.9) we may argue that the first columns of VQ contain more important information
about the Schur vectors to be detected than the last columns. One might replace
V by VQ1,jmin

and W by WZ1,jmin
, where jmin , j, and continue the process.

It is not clear how to solve (3.7) in practice, because of the projections involved.
Let K be a nonsingular n 3 n matrix and denote Q̃k 5 [Qk21 , q̃] (the matrix Qk21

expanded by q̃), Z̃k 5 [Zk21, z̃] (Zk21 expanded by z̃), Ỹk 5 K21Z̃k , and H̃k 5

Q̃*k Ỹk . It is shown in [5] that (3.7) is equivalent to

Q̃*k v 5 0, (I 2 Ỹk H̃21
k Q̃*k )K21(b̃A 2 ãB)(I 2 Ỹk H̃21

k Q̃*k )v 5 2r̂, (3.10)

with r̂ 5 (I 2 Ỹk H̃21
k Q̃*k )K21r. The projections in front of and after K21(b̃A 2 ãB)

are the same, so that Krylov subspace methods like GMRES [9] or BiCGstab(,)
[12] can be used to solve (3.10). The performance of Krylov subspace methods can
often be improved by using some kind of preconditioning. The matrix K in (3.10)
may be interpreted as a preconditioner, and in [5] it is proposed to take K P A 2

tB. This preconditioner K can be used for different pairs kã, b̃l, so it may be useful
to put some effort in the computation of an effective preconditioner. In some cases
it might be worthwhile to determine a complete factorization of the matrix A 2

tB, for one fixed value of t (only one preconditioner is constructed for the whole
JDQZ process); the costs of this complete factorization may be amortized in some
cases, because several equations of type (3.10) have to be solved in the JDQZ
method.

A pseudo-code for the JDQZ method is given in Algorithm 2. In order to apply
the JDQZ method, the user has to supply some parameters, viz.,

«, t, kmax , jmin , jmax , (3.11)

and a starting vector q̃ [ Cn. The parameter « is a stopping tolerance for the JD
iteration (the JD iteration will be stopped when iri2 # «), t is a target (the JDQZ
method is supposed to compute the eigenvalues closest to t), kmax is the number
of eigenvalues one would like to compute, and jmin and jmax are the minimal (after
restart) and maximal dimensions of the search space spanhV j, respectively. If there
is no approximate eigenvector known, one can take a random starting vector q̃.
The notation Qk 5 [Qk21 , q̃] means that Qk is the matrix obtained from expanding
Qk21 with the vector q̃. For k 5 1 the matrices Qk21 and Zk21 are not defined, and
we adopt the conventions I 2 Q0 Q*0 5 I, Q1 5 [Q0 , q̃] 5 q̃, etc. In case kmax 5 1,
Algorithm 2 reduces to the JD method (see Section 3.1).
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ALGORITHM 2. JDQZ: kmax eigenvalues close to a target t are computed. « is
a stopping tolerance; jmin and jmax determine the smallest (after restart) and largest
dimensions of the search subspace spanhV j, respectively.

The JDQZ method may converge very fast, even for interior eigenvalues and
double eigenvalues (see [5]). In Section 3.1 we mentioned that the JD method
converges quadratically, if the correction equation (3.3) (or (3.7), (3.10) in the
JDQZ setting) is solved accurately. Experiments show (see, e.g., [5]) that it is not
necessary to solve (3.10) accurately in the beginning of the JDQZ process for
obtaining fast convergence. The correction equation (3.10) can be solved iteratively,
which allows the JDQZ method to be applicable to very large eigenvalue problems.
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An important question is how to choose a good stopping criterion for the iterative
solution of (3.10); solving (3.10) accurately may reduce the number of steps in the
JDQZ method, but the execution time of a single step may become higher. It is
not clear which strategy leads to the best overall performance of the JDQZ method.
In [5] it is suggested to solve (3.10) with a Krylov subspace method and to stop
the iterative process when

irii2 , 22jir0i2 , (3.12)

where ri is the ith residual of the Krylov subspace method and j is the iteration
number of the JDQZ step (i.e., the dimension of spanhV j). This choice leads to an
efficient method.

We refer to [5] for more details, discussions, variants, and illustrations of the
JDQZ method.

Remark 3.1. For standard eigenvalue problems (i.e., B 5 I in (3.1)) one can
simplify the method described above. In [5], the Jacobi–Davidson QR (JDQR)
method is proposed for computing a partial Schur form AQk 5 Qk Rk (here Rk is
a k 3 k upper triangular matrix, and Qk is as above). Roughly speaking, this JDQR
method can be obtained from the JDQZ method by replacing W by V, Zk by Qk ,
and kã, b̃l by l̃ 5 ã/b̃. Hence, in the JDQR method one might save both computation
time and memory storage in comparison with the JDQZ method. See [5] for
more details.

3.3. Using JDQZ in Continuation Methods

In continuation methods we have to compute the rightmost eigenvalues to (2.3)
and investigate whether an eigenvalue equals zero or not (see Section 2.2). In many
physical applications, most of the eigenvalues have negative real parts, and only a
few of them (if any) have a nonnegative real part. In this paper we will consider
this situation, which means that eigenvalues close and equal to zero belong to the
rightmost ones. We now discuss how the parameters (3.11) in the JDQZ algorithm
should be chosen; we will focus on the target t (note that A is the Jacobian matrix
F9(y, e)).

Since we are interested in eigenvalues close to 0, one might choose t 5 0.
However, it may be safer to have t in the right-half plane, in order to avoid missing
eigenvalues with positive real parts. On the other hand, when ut u is too large, the
JDQZ method may not be able to designate between different eigenvalues close
to 0, which may lead to a slower convergence rate (or even no convergence at all).
Hence, the choice t 5 1 seems reasonable. Moreover, in case t 5 1, the approximated
eigenvalues kã, b̃l closest to t correspond to the in modulus largest approximated
eigenvalues of the matrix (A 2 B)21(A 1 B) (see [5]), and the dominant eigenvalues
of (A 2 B)21(A 1 B) determine whether a stationary solution is stable or not (cf.,
e.g., [3]). Therefore we suggest taking t 5 1 when applying the JDQZ method in
continuation methods.
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The choice of kmax depends on the number of bifurcation points one expects to
compute; it is advised to take kmax slightly larger than this number. It is possible
to change kmax during the continuation process. Standard choices for the other
parameters can be found in [5] and Section 4.2.

In general one uses a randomly chosen vector q̃ as a starting vector for the JDQZ
method. But, when using JDQZ in combination with continuation, one has already
computed Schur vectors in the previous continuation step(s). Using these Schur
vectors may lead to faster convergence (cf. the selection of a starting vector for
computing stationary solutions in Algorithm 1). One might, e.g., take the Schur
vector which was computed first in the previous continuation step (this Schur vector
is also an eigenvector) as a starting vector q̃. Instead of starting JDQZ with one
single vector, one might also start with a search subspace spanhV j, e.g., the space
spanned by the Schur vectors from the previous continuation step. Note that it is
not necessary to compute eigenvectors (apart from the first one, which is also a
Schur vector); in fact, the columns of V have to be orthogonal. (Also extrapolation
of Schur vectors from different continuation steps is possible.) Although these kinds
of starting procedures look attractive, we observed in our experiments that there
is not much difference (in CPU time) between starting with an arbitrary vector q̃
or with the first Schur vector of the previous continuation step. Starting with the
subspace spanned by the old Schur vectors even leads to higher computation times.
See Section 4.2.2 for our experiments and more discussion.

A possible disadvantage of using previously computed Schur vectors is that they
may be close to Schur vectors in the current step which do not correspond to the
rightmost eigenvalues. This may slow down the convergence of the JDQZ method
(because ‘‘wrong’’ Schur vectors are selected first), or, the JDQZ method may
converge to undesired eigenvalues (those corresponding to Schur vectors close to
the Schur vectors used for starting JDQZ). To illustrate this, consider, e.g., the
2 3 2 matrices A 5 diag(21, e) and B 5 I. The Schur vector (1, 0)T is a Schur
vector for all e [ R, but corresponds only to the rightmost eigenvalue for
e , 21, and not for e . 21. However, this phenomenon did not occur in our experi-
ments.

4. AN APPLICATION: RAYLEIGH–BÉNARD CONVECTION

4.1. The Rayleigh–Bénard Problem

In order to illustrate the JDQZ method in combination with continuation meth-
ods, we consider the 2D Rayleigh–Bénard problem, which has been studied exten-
sively in the literature (see, e.g., [3]). A liquid layer in a two-dimensional rectangular
box, with length 10 and height 1, is heated from below. The temperature on the
top and bottom of the box is constant, the sidewalls are isolated, and all velocities
are zero on the boundaries (no-slip condition). The horizontal and vertical velocities
are denoted by u and w, respectively, p stands for the (scaled) pressure, and the
temperature is denoted by T. This leads to the following system of partial differen-
tial equations,
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with boundary conditions,

u 5 w 5 T/x 5 0 at x 5 0, 10,

u 5 w 5 0, T 5 1 at z 5 0, (4.5)

u 5 w 5 T 5 0 at z 5 1.

Here Pr is the Prandtl number and Ra is the Rayleigh number; in this paper we
take Pr 5 5.5, and Ra will be our continuation parameter e [3]. Note that p is not
uniquely determined; this leads to, after discretization of the spatial variables, a
Jacobian which is always singular. It is clear from Section 2 that this is not attractive
for continuation, and therefore we prescribe p at a certain point: we set p(5, As) 5 0.

Equations (4.1)–(4.5) are discretized on a staggered grid with uniform mesh sizes,
using finite difference approximations. For the nonlinear terms we use first-order
upwind, and the other terms are discretized by second-order central differences.
In the grid cell containing the point (5, As) we replace the discretization of (4.3) by
p(5, As) 5 0. The discretized system obtained in this way can be written in the form
(2.1), where Y(t) contains the velocities u, w, the pressure p, and the temperature
T at certain gridpoints, and e 5 Ra. The dimension n of the system (2.1) equals
4nxnz, where nx and nz stand for the number of grid cells in the horizontal and
vertical directions, respectively. The matrix B is a diagonal matrix, which is singular,
due to the boundary conditions (4.5) and the absence of time derivatives in (4.3).
The unknowns are numbered per grid cell, and a grid cell is only coupled to six of
its neighbours. The grid cells are ordered by column, from bottom to top, beginning
with the first column. This leads to a Jacobian matrix of which the bandwidth is
equal to 4nz 1 3; when nz is small, it is feasible to compute LU-factorizations of
this Jacobian F9(y, Ra) (needed for the Newton process in Algorithm 1), and the
preconditioner K 5 A 2 tB for the JDQZ method.

Remark 4.1. In [3] the Rayleigh–Bénard problem was formulated using the
temperature T, the streamfunction c, and the vorticity g (with u 5 c/z, w 5

2c/x, and g 5 w/x 2 u/z) as unknown quantities. This leads to a system
of three partial differential equations—instead of four—and this approach is more
efficient from a numerical point of view. Our reason for using primitive variables
is that this approach can easily be extended to 3D, while this is not possible for
the streamfunction–vorticity formulation.
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TABLE I
Values of the First Two Bifurcation Points (Ra1 and Ra2) for Different Grid Sizes

and the Corresponding Values Obtained in [3]

nx nz Ra1 Ra2

129 17 1698.3 1701.7
257 17 1698.8 1701.8
129 33 1720.0 1724.0

[3] 1731.3 1734.1

4.2. Numerical Experiments

In this section we will describe our experiments. In Section 4.2.1 we will give the
actual results of our continuation code, and the performance of the JDQZ method
(for different choices of parameters) will be discussed in Section 4.2.2.

4.2.1. The continuation code applied to the 2D Rayleigh–Bénard problem. In
Table I we have listed the first two bifurcation points obtained with our code (for
different grid sizes), and we compared these to the corresponding values from [3].

From Table I we see that nx 5 129 and nz 5 33 give the most accurate results.
Due to memory limitations, we were not able to perform experiments with smaller
grid sizes. In particular, the memory requirements for the LU-factorization of
A 2 tB can be severe; the number of (possible) nonzero entries of L and U equals
O (nx n2

z). The experiments with nz 5 17 suggest that is not useful to take nx . 129.
We took nx 5 129 and nz 5 33 in the experiments described in this section.

The following bifurcation behaviour for the 2D Rayleigh–Bénard problem has
been found in [3]. The trivial, motionless, solution u ; w ; 0 and T ; 1 2 z is a
stationary solution for all Ra . 0. For Ra , Ra1 it is the only stationary solution,
and this stationary solution is also stable for Ra , Ra1 . At Ra 5 Ra1 a 10-cell
solution (this is a nontrivial solution) branches off, which is stable for Ra . Ra1 ,
and the motionless stationary solution becomes unstable for Ra . Ra1 . At Ra 5

Ra2 an unstable 9-cell solution branches off, and this solution splits into a stable
and an unstable stationary solution at another bifurcation point. The motionless
solution splits again at a third bifurcation point, which results in an 11-cell solution.

With our code we found the same bifurcation behaviour. The 9-cell solution splits
at Ra 5 1864.6, and the 11-cell solution branches off at Ra 5 1781.0. Our results
are visualized in Fig. 1, and three nontrivial stationary solutions are displayed in
Fig. 2. The pictures in Fig. 2 look similar to the corresponding ones in [3]. Hence
we may conclude that our code produces meaningful results.

The bifurcation points can be computed as follows. At Ra 5 Ra1, the sign of the
largest eigenvalue of (2.3) changes (the rightmost eigenvalues of (2.3) turned out
to be real in our case), and the secant method has been used to determine at which
value Ra the largest eigenvalue of (2.3) equals 0. To compute the second bifurcation
point Ra 5 Ra2 , we determined, using the secant method, when the second largest
eigenvalue equals 0, etc. In order to determine more bifurcation points at an unstable
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FIG. 1. A bifurcation diagram. The Rayleigh number Ra is on the horizontal axis, and the vertical
velocity w at (0.0362, 0.75) (the same point as in [3]) is on the vertical axis. Each curve corresponds to
a stationary solution; stable stationary solutions are indicated with a solid line, and unstable ones with
a dashed line. The bifurcation points are given by small circles (n).

branch, we need to compute several eigenvalues at each continuation step and not
only the rightmost one.

4.2.2. Performance of the JDQZ method. In this section we will consider the
performance of the JDQZ method. We will deal with the case nx 5 129 and nz 5

17, instead of nx 5 129 and nz 5 33, because of memory requirements and slower
computation times in the latter case (in particular, wall clock time, due to swapping).

In Algorithm 1 we set De 5 DRa 5 10, and the Newton iteration is stopped
when two consecutive approximations y(k)

j and y(k11)
j of the stationary solution yj

satisfy iy(k11)
j 2 y(k)

j iy # 1026 (i?iy stands for the maximum norm). In Algorithm 2
(the JDQZ method) we set t 5 1 (cf. our discussion in Section 3.3), jmin 5 10,
jmax 5 20, and we take different values for kmax and « (see Table II). In order to
solve the correction equation (3.10) we used two different Krylov subspace methods,
viz. GMRESm (at most m steps with full GMRES, no restarts) [9] with m 5 5, and
BiCGstab(,) [12] with , 5 2 and a maximum of 100 matrix–vector multiplications
for solving (3.10) per JD step. Further, the stopping criterion (3.12) has been used
for both methods. It is likely that (3.10) is solved more accurately with BiCGstab(2)
than with GMRES5 (more matrix–vector multiplications are allowed for BiCGstab
(2)). Therefore, one might expect that less JD steps are needed for BiCGstab(2),
but, a single JD step is more expensive. A priori it is not clear which Krylov subspace
method leads to the most efficient variant of JDQZ. In order to obtain a subspace
spanhV j as soon as possible, GMRES1 is used to solve (3.10) when j # jmin ( j is
the dimension of spanhV j).
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FIG. 2. Three solutions, viz., a 10-cell solution at Ra 5 1721 (the first picture), a 9-cell solution at
Ra 5 1725 (the second picture), and an 11-cell solution at Ra 5 1782. In each picture, the current of
the fluid is given; a dashed curve means that the fluid moves clockwise, and a solid curve indicates an
anticlockwise direction of the fluid.

TABLE II
The CPU-Time (in Seconds) for an ‘‘Average’’ Continuation Step

Solving CPU(s) CPU(s) CPU(s)
kmax « (3.12) JDQZ1 JDQZ2 JDQZ3

— — — 33 33 33
4 1026 GMRES5 168 162 170
4 1026 BiCGstab(2) 178 166 173
4 1029 GMRES5 211 215 284
4 1029 BiCGstab(2) 245 226 265
6 1026 GMRES5 207 197 305
6 1026 BiCGstab(2) 227 210 289
6 1029 GMRES5 271 262 489
6 1029 BiCGstab(2) 345 307 437

Note. In the first line of the table the CPU-time for one step of Algorithm 1 has been displayed (no
eigenvalues have been computed in this case).
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We consider three different strategies to start the JDQZ method, viz., starting
with a random vector, starting with the first column of the matrix Qkmax

computed
in the previous continuation step, and starting with the subspace spanned by the
columns of Qkmax

. We will call these methods JDQZ1, JDQZ2, and JDQZ3, respec-
tively (the latter two have been discussed in Section 3.3).

In Table II we listed the CPU times (in seconds) for an ‘‘average’’ continuation
step. (We performed 15 steps, and the average of the last 10 steps is listed in the
table, so that the effect of starting the continuation is ruled out.) In each step, three
Newton iterations were needed to compute a stationary solution with Algorithm
1. The computations were done on a SUN SPARC 1000E with four processors.

From the results in Table II we may conclude that the JDQZ method is well
suited for computing several eigenvalues accurately.

When we compare the CPU-times for GMRES5 and BiCGstab(2) we see that
the first one is the most efficient for solving (3.10) when JDQZ1 or JDQZ2 is used.
In the experiments with JDQZ1 and JDQZ2 we observed that K 5 A 2 tB is a
very good preconditioner for (3.10); the criterion (3.12) was often satisfied after
performing two or three GMRES steps. When applying BiCGstab(2), one has to
perform four matrix–vector multiplications per step. Hence, BiCGstab(2) requires
more matrix–vector multiplications per ‘‘average’’ step, and this might explain why
GMRES5 is more efficient for JDQZ1 and JDQZ2. On the other hand, when
JDQZ3 is used, BiCGstab(2) turns out to be more efficient than GMRES5 . In these
experiments we observed that the average number of JD steps for GMRES5 is
significantly larger than for BiCGstab(2), and this might explain why solving (3.10)
with BiCGstab(2) is more efficient when JDQZ3 is used.

A somewhat surprising result is that starting the JDQZ method with Schur vectors
from the previous continuation step does not improve the efficiency of the method
much. Starting with the first Schur vector (JDQZ2) leads to (almost) the same
CPU-times (in particular when GMRES5 is used to solve (3.10)), while starting
with all Schur vectors (JDQZ3) leads to a significantly slower method. In order to
understand this, we have plotted the convergence behaviour of the different JDQZ
methods at the last continuation step in Fig. 3. When we compare JDQZ1 with
JDQZ2 we observe that the first Schur vector is detected earlier with JDQZ2, but
JDQZ2 needs more JD steps to compute the other Schur vectors. This might be
explained as follows: the first Schur vector of the previous continuation step might
have a larger component in the direction of the first Schur vector than a random
vector (observe that the norm of the initial residual is smaller), so that this first
Schur vector is found earlier. On the other hand, it is likely that a random vector
has larger components in the direction of the other Schur vectors, so the subspace
spanhV j (after the detection of the first Schur vector) might contain more informa-
tion about the other Schur vectors than the corresponding subspace in JDQZ2
(compare the norms of the residuals just after the first restart, when the first Schur
vector has been removed from spanhV j). In the upper picture in Fig. 3 we see that
both methods need about the same number of JD steps in order to find six Schur
vectors (with corresponding eigenvalues).

For the JDQZ3 method we would not expect such behaviour, because the start
subspace contains all Schur vectors computed in the previous continuation step.
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FIG. 3. The convergence of the JDQZ method with different starting strategies for the last continua-
tion step (kmax 5 6, « 5 1029 and GMRES5 has been used to solve (3.10)). On the horizontal axis the
number of JD steps has been displayed, and log10(iri2) (r is the residual in the JDQZ method) is on
the vertical axis. In both pictures, the solid curve corresponds to JDQZ1; the dashed curve in the upper
picture corresponds to JDQZ2, and the dashed curve in the lower picture corresponds to JDQZ3.

Again the first Schur vector is found earlier (in comparison with JDQZ1). It is
possible that some Schur vectors of the previous continuation step are removed in
spanhV j when this space is reduced, after restarting, from dimension 20 (5jmax) to
10 (5jmin), but this does not explain why JDQZ3 needs more JD steps than JDQZ1
(or JDQZ2) to discover the other Schur vectors. Perhaps it is better to start JDQZ
with the first old Schur vector and add the second Schur vector of the previous
continuation step to spanhV j when the first new Schur vector has been detected
and removed from spanhV j etc. We have not tried this approach. On the other
hand, JDQZ1 performs very well for this example, so it could be hard to construct
a method which performs better in this case.

With both « 5 1026 and « 5 1029 we obtained the same eigenvalues, so it is not
necessary to take « too small. In applications one might e.g. set « 5 1026, and switch
to « 5 1029 when an eigenvalue close to the imaginary axis has been found. The
four eigenvalues computed with kmax 5 4 were also detected with kmax 5 6, and
they turned out to be the four rightmost ones. This shows that the choice kmax 5

4 is a reasonable one.
Unfortunately, it is not possible in general to determine a complete LU-factoriza-

tion of the matrix A 2 tB (consider, e.g., problems where the matrices A and B
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stem from a system of partial differential equations in 3D). For these problems
one might consider an incomplete decomposition K 5 LU P A 2 tB, or another type
of preconditioner. In order to investigate the behaviour of JDQZ when incomplete
factorizations are used, we have repeated some of our experiments with an incom-
plete factorization of A 2 tB. An incomplete block LU factorization, based on a
repeated red-black ordering [1] is used (cf. [14]); each block is a 4 3 4 matrix
corresponding to the variables u, w, p, and T at a certain grid cell. The linear
equations arising from Newton’s method in Algorithm 1 have been solved with
BiCGstab(8). The CPU time of an average continuation step with kmax 5 0 is 388 s,
while only 33 s were needed for a direct factorization of the Jacobian (see Table
II). It is not an easy task to compute eigenvalues with JDQZ, using this precondi-
tioner; we did not find any eigenvalues with the methods and parameters chosen
as in Table II (i.e., at most 100 matrix–vector multiplications with BiCGstab(2)).
Using BiCGstab(8) instead, with a maximum of 1000 matrix–vector multiplications
for solving (3.10) (instead of 100), and kmax 5 4, « 5 1026, we were able to find the
four rightmost eigenvalues at Ra 5 1900. The CPU time of this continuation step
was 4793 s, while an ‘‘average’’ continuation step with a direct factorization took
less than 180 s (cf. Table II). For the 2D Rayleigh–Bénard problem, this incomplete
factorization is not well suited as a preconditioner for solving the correction equation
(3.10). Without a good preconditioner it can be very hard to obtain eigenvalues
with the JDQZ method within a reasonable computation time.

Finally we compare the JDQZ method to the SIT method [13], which has been
used in [3] to compute the rightmost eigenvalues. In [3] the SIT method (which is
essentially a block version of the power method; see [13, 3] for the details) has
been applied to the matrix C 5 (B 2 A)21(A 1 B); a stationary solution y is stable
when all eigenvalues of the matrix C have a modulus less than 1 (cf., e.g., [3]). For
our discretization of the Rayleigh–Bénard problem the SIT method was not able
to compute the rightmost eigenvalue accurately; in our experiments we observed
that the error in the rightmost eigenvalue is slightly more than 1%—even for the
experiments with much higher CPU times (e.g., 930 or 2297 s) for an ‘‘average’’
continuation step than those corresponding to the JDQZ method with kmax 5 4
and « 5 1026. (An LU-factorization of B 2 A has always been used to solve the
linear systems occurring in the SIT method.) These experiments indicate that the
JDQZ method may be much more efficient than the SIT method for computing
eigenvalues occurring in continuation methods for problems of the type that we
have considered.

4.3. Conclusions

The JDQZ method can be a very efficient tool for computing several rightmost
eigenvalues in continuation methods, provided a good preconditioner for the correc-
tion equation (3.10) is available. Without such a preconditioner the JDQZ method
may behave rather poorly (cf. also [5]). For some (small) problems a good precondi-
tioner can be constructed by a direct factorization of A 2 tB, but this is not feasible
for large problems. When such preconditioners become available, the JDQZ method
might be suitable for computing eigenvalues related to 3D problems.
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In our experiments we observed that the JDQZ method is more efficient than
the SIT method [13], which is not surprising because the SIT method is based on
a block version of the power method, which converges linearly, while the JDQZ
method often shows a quadratic convergence behaviour.

Using one or more Schur vectors from the previous continuation step does not
necessarily lead to a faster convergence of the JDQZ method. Starting the JDQZ
method with one Schur vector or a random vector gives about the same computation
times, while starting with a subspace containing all previously computed Schur
vectors led to a significantly slower method.
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